수학의 정석

메뉴 로그인
회원가입
[소순영] 기본편 수학 II (2014) - 일차함수
y=lf(x)l 의 그래프

절댓값 기호가 있는 방정식의 그래프는 절댓값 기호 안이 0이 되는 x값 경계로 나누어 그리는데
y=lf(x)l : y=f(x)의 절댓값 그래프에서는 f(x)가 0이 되는 값 경계
즉, f(x)>=0 과 f(x) <0 으로 나누어 그리는데
f(x) >=0 일때는 그냥 그리면 되지만 f(x)<0이라면 y=-f(x)를 그려야 하는것 아닌가요?

하지만 y=-f(x)의 그래프를 그려서 x축 대칭이동을 하면 y=f(x) 그래프를 무한대로 그린후
y<0 부분을 x축 대칭이동한 그래프와 다르게 나옵니다.

y=lf(x)l 의 그래프에서는 "절댓값 기호 안이 0이 되는 x값을 경계로" 를 이해하려면
어떻게 보아야 하나요?

안녕하세요 질문에 대한 관련 답변입니다. y=f(x) 의 그래프의 함숫값은 0도 나올수도 있고 양수도 나올수 있고 음수도 나올수 있습니다. 따라서 y=lf(x)l의 그래프는 y=f(x)의 그래프를 그린다음 함숫값이 음수인 경우 위로 올려서 그려야 합니다. 이것은 x축 대칭한다고 표현합니다. 절댓값 기호 안이 0이 되는 값은 절댓값 안에 함숫값이 0보다 작은 작은 범위를 생각하시면 됩니다.

안녕하세요!

닫기